

CMS Detector and its Physics

Disclaimer: "I'm just a Computer Scientist"

Slides Adapted from the CMS e-Masterclass, André David

About 10,000 of its inhabitants came together to build...

The Large Hadron Collider at CERN, Geneva, Switzerland

And in July 2012....

12 February 2015

Two of these 10,000 people presented results...

Joe Incandela CMS Spokesperson 2012-2013

...that made a lot of physicists VERY happy...

... including these two guys!

SO WHAT IS ALL THE FUSS ABOUT?

Our current understanding of the constituents of matter

12 February 2015

CMS e-Masterclass, André David

How do we know this?

Before the particle accelerator

Smash things together and see what happens!

Accelerator Energy

12 February 2015

CMS e-Masterclass, André David

10

Accelerator Energy

Universal building blocks

Groups of 3 quarks __uud = proton form Nucleons __udd = neutron

Universal forces

Building atoms

BUT THAT IS NOT THE END OF THE STORY...

The collision energy was used *to create* something new, that *did* exist but does not any more!

Accelerator Energy

13,700,000,000 years ago there

were other things in the Universe – that we can "create" in the laboratory

So we have built a Time Machine!

12 February 2015

Fundamental Particles at the time of the Big Bang

Le Zoo des particules

In fact we know very little!

Answers to simple questions

- Since the early 70s, particle physicists have synthesized all their knowledge in a single model: the «Standard Model»
- We know and we understand a lot but we do not know everything ...
- Mysteries remain unexplained
- There are things to discover ...

The massive mystery

Why do some fundamental particles have mass while others don't?

Do you remember these guys?

Nearly 50 years ago six physicists proposed an explanation of how particles get mass...

Guralnik Hagen Englert Brout

Higgs

12 February 2015

CMS e-Masterclass, André David

THEORY: The Brout-Englert-Higgs Field

The more a particle interacts with this *invisible* field, the more mass it gets.

But if this field is invisible, how can we PROVE it exists?

The theory predicts that the field has an associated particle:

The Higgs Boson! We can try to create the Higgs boson in our experiment!

It is predicted to be VERY rare

Assume ~7'000 grains of rice in a serving of Kheer...

...then the chances of creating and finding a Higgs boson is...

Like finding 1 grain if everyone in Geneva eats Kheer once a day for a whole month!!

~1 in 1,000,000,000,000 (yes, that's a million million)

And just to make things even more complicated...

The Higgs boson would "decay" instantly to lighter particles. We only detect these resulting particles – so we have to be like detectives – look at the evidence to see what happened!

But despite all these difficulties

Fabiola Gianotti ATLAS Spokesperson 2010-2012

We found it!

Joe Incandela CMS Spokesperson 2012-2013

12 February 2015

CMS e-Masterclass, André David

We Found Some Higgs Bosons!!

These bumps in the data signify a new particle, found in two different ways, at the same mass – about 125 GeV/c2

But we have only just started to understand the Higgs boson...

But we have only just started to understand the Higgs boson...and we need to look from every angle

SO HOW DO WE "CREATE" PARTICLES IN REALITY?

12 February 2015

CMS e-Masterclass, André David

One of the fastest racetracks on earth:

The Large Hadron Collider

12 February 2015

Several thousand billion

ed of light avel rol

27km ring, 100m

1000 times a second

totons travelling

99999999 % of the

Einderground, over

And then what?

• After the collisions, we have detectors that "reveal" the presence of different particles.

