DeepJet: A Machine Learning Environment for

High-energy Physics

European Research Council

Established by the European Commission

Swapneel Mehta; Mauro Verzett; Jan Kieseler; Markus Stoye
on behalt ot the CMS Collaboration at CERN

The DeepJet Framework 1s used to extrapolate and
find applications for cutting-edge practices in deep
learning to problems mvolving supervised learning
for high-energy physics. Orginally envisaged to
support jet-flavor tagging and classification, it has
orown to encompass a range of use-cases as 1t
underwent a transformation into a multi-purpose
tool for physics analysis at the Compact Muon
Solenoid (CMS) Experiment. This poster illustrates
the workflow, features, and use-cases for this
framework as we extend 1t to a generalised
supervised learning framework for physics at the
European Organisation for Nuclear Research

(CERN).

CMS DETECTOR STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter : 15.0m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7m Microstrips (80x180 pm) ~200m? ~9.6M channels
Magnetic field :3.8T
SUPERCONDUCTING SOLENOID
g

Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m?> ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Figure 1. The Compact Muon Solenoid (CMS) Detector

Development

Jets are collimated streams of radiation that often
contributes significantly to the background 1n a
high-energy collision. Jet tagging has been studied 1s
to and has resulted 1n the development of numerous
algorithms as presented by the CMS Experiment

[1].

The central 1idea in the DeepCGSV tagger is the
incorporation of flavour information in addition to
kinematic 1nformation that gives 1t equal or
improved performance over the other jet taggers (b
and c) making 1t an efficient multi jet classifier.

The development of the DeepCGSV (Combined
Secondary Vertex) flavor tagger 1n part initiated the
project of extending the script(s) into a tull-fledged
tool for Physics Analysis.

1 13 TeV, 2016
£ EeMs __udsg
e _ Simulation: .0 _
B - f é z s é ~
S | ti+jets |
— : : : : :
~ o P 220GV e A _
= = z z ; S S90S =
ke = é § et =
~+= B 4% o* 'Q'.]
< B : : TR gk 7
O - s i -
5 . e W _
= ; 0, ‘0‘;‘. R
0.:) 2 o 0"' R

10— :__. 9...;..;§9...:’.¢:’. L R S S SRy 4 RRR L L e LLL LR ELEER LI EECTEEERS —
2 F BT
= F L —CSV (Runt) -

- ¢ —— CSWv2 (AVR) -
R ’ . —C3w2 7
1073 TR N e A B .—— DeepCSV. . _
S R G .— CMVAv2 =
_I | I: IO.I || II&'I | I | | IIlIIIIlIIIllllllllllllllll—

o

o1 02 03 04 05 06 07 08 09
b - jet Efficiency

—

Figure 2. Comparing the Performance of Jet Taggers used by the
CMS Experiment over the years

Contact

Swapneel Mehta,
European Organisation for Nuclear Research
swapneel.mehta(@cern.ch

Challenges

Moving from a development environment to a
production-ready setup 1s, quite unsurprisingly, a
challenging task. It involves constraints with the
compute requirement, memory, threads, and
processes apart from compatibility and dependency-
management. A few breakpoints include:

l. Attempting to run DeepJet on CMSSW 1nvolves
interaction with certain G++ interfaces, Python
code for TensorFlow with a backend in C++
creating huge memory overheads.

2. Training time 1s seldom outlived by the hifetime of
Kerberos tokens which requires repetitive,
automated renewal to avoid failed jobs.

Human elements often impact the process especially
when attempting to 1nvolve third-parties for
deployment:

. Gode may be underutilising parallelization and
low memory features available within frameworks.

2. It 1s often unnecessary to reinvent the wheel with
regards to existing software for handling issues.

TensorkFlow + Keras Custom Framework
Python-based C++ based
Minimal interaction with .
ROOT ROQOT-centric 1/0
Fewer Processes Multiple Processes
Expendable Jobs Job Failure Expensive

Few Memory Constraints Memory Gonstraints

Table 1. Comparing ‘Development’ and ‘Deployment’

Technical Details

At 1ts core, Deeplet 15 a set of wrappers built for
TensorFlow and Keras that 1s integrated with a set
of custom libraries that manage to bypass the
constraints that often pose significant computing
challenges to the execution of physics analysis.

Our framework sports a range of features: simple
out-of-memory training a with multi-threaded
approach to maximally exploit the hardware
acceleration, simple and streamlined 170 to help
bookkeeping of the developments. It offers a
complete set of ready-to-use templates for a
simplified learning curve, also serving as guidelines
for users to build their own components within

Deep]Jet.

The Deepjet environment 1s compatible with the
CMS Software Repository. It has undergone a
prolonged series of revisions and updates in order to

be able to tfunction within the CMSSW [PR
#19893].

It 1s 1nstallable as a Python package and available
within a Docker image to simplify the deployment
across multiple systems.

Root Visualizations
Dataset
A
| - -
I Reading J >< Conversion J >~ Custom Data
\ Store
I Evaluation J< Testing J‘ Training]
2 P
Friend Tree ‘ Model

Chart 1. 'The Workflow for Deep]Jet

The DeepJet Framework aims to provide a set of
templates as a clear set of guidelines for creating,
distributing, and customising existing models. Our
workflow segregates the core package from the user-
defined modules and data structures as illustrated.

DeepJet DeepJetCore
Custom Labels | Reaceng J
Datastructure > Weights l
Classes |
| Conversion J
Layers Dense § l
Losses » Conv2D -
Metrics Dropout raining
| | Testing
Custom Epochs -.
Model » Batch Size l
Training Learning Rate
‘ Evaluation
User-defined
Parameters

Chart 2. A Functional Overview of the Framework

Conclusions

T'he transition from development to deployment 1s a
non-trivial process especially in the context of large-
scale deep learning models. It 1s imperative to afford
at least an equivalent amount of consideration to
this stage of the software development life cycle as
we do the planning and development phases.

DeepJet 1s a case-study for such a scenario whereby
a set of scripts evolved into a multipurpose machine
learning framework that sismplifies the worktlow for
hundreds of analyses at the CMS Experiment.

[ROOT

- Data Analysis Framework

m [EE
[m] 3"

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM

o IEI%EI =]
s o

