
DeepJet: A Machine Learning Environment for
High-energy Physics

Swapneel Mehta; Mauro Verzetti; Jan Kieseler; Markus Stoye

on behalf of the CMS Collaboration at CERN

Swapneel Mehta,
European Organisation for Nuclear Research
swapneel.mehta@cern.ch

Contact References

The DeepJet Framework is used to extrapolate and
find applications for cutting-edge practices in deep
learning to problems involving supervised learning
for high-energy physics. Originally envisaged to
support jet-flavor tagging and classification, it has
grown to encompass a range of use-cases as it
underwent a transformation into a multi-purpose
tool for physics analysis at the Compact Muon
Solenoid (CMS) Experiment. This poster illustrates
the workflow, features, and use-cases for this
framework as we extend it to a generalised
supervised learning framework for physics at the
European Organisation for Nuclear Research
(CERN).

Abstract

At its core, DeepJet is a set of wrappers built for
TensorFlow and Keras that is integrated with a set
of custom libraries that manage to bypass the
constraints that often pose significant computing
challenges to the execution of physics analysis.

Our framework sports a range of features: simple
out-of-memory training a with multi-threaded
approach to maximally exploit the hardware
acceleration, simple and streamlined I/O to help
bookkeeping of the developments. It offers a
complete set of ready-to-use templates for a
simplified learning curve, also serving as guidelines
for users to build their own components within
DeepJet.

The DeepJet environment is compatible with the
CMS Software Repository. It has undergone a
prolonged series of revisions and updates in order to
be able to function within the CMSSW [PR
#19893].

It is installable as a Python package and available
within a Docker image to simplify the deployment
across multiple systems.

Development

Challenges

The DeepJet Framework aims to provide a set of
templates as a clear set of guidelines for creating,
distributing, and customising existing models. Our
workflow segregates the core package from the user-
defined modules and data structures as illustrated.

Tutorial

The transition from development to deployment is a
non-trivial process especially in the context of large-
scale deep learning models. It is imperative to afford
at least an equivalent amount of consideration to
this stage of the software development life cycle as
we do the planning and development phases.

DeepJet is a case-study for such a scenario whereby
a set of scripts evolved into a multipurpose machine
learning framework that simplifies the workflow for
hundreds of analyses at the CMS Experiment.

Conclusions

Development Deployment

TensorFlow + Keras Custom Framework

Python-based C++ based

Minimal interaction with
ROOT ROOT-centric I/O

Fewer Processes Multiple Processes

Expendable Jobs Job Failure Expensive

Few Memory Constraints Memory Constraints

Jets are collimated streams of radiation that often
contributes significantly to the background in a
high-energy collision. Jet tagging has been studied is
to and has resulted in the development of numerous
algorithms as presented by the CMS Experiment
[1].

The central idea in the DeepCSV tagger is the
incorporation of flavour information in addition to
kinematic information that gives it equal or
improved performance over the other jet taggers (b
and c) making it an efficient multi jet classifier.

The development of the DeepCSV (Combined
Secondary Vertex) flavor tagger in part initiated the
project of extending the script(s) into a full-fledged
tool for Physics Analysis.

Technical Details

Figure 2. Comparing the Performance of Jet Taggers used by the
CMS Experiment over the years

Table 1. Comparing ‘Development’ and ‘Deployment’

Chart 1. The Workflow for DeepJet

Moving from a development environment to a
production-ready setup is, quite unsurprisingly, a
challenging task. It involves constraints with the
compute requirement, memory, threads, and
processes apart from compatibility and dependency-
management. A few breakpoints include:

1. Attempting to run DeepJet on CMSSW involves
interaction with certain C++ interfaces, Python
code for TensorFlow with a backend in C++
creating huge memory overheads.

2. Training time is seldom outlived by the lifetime of
Kerberos tokens which requires repetitive,
automated renewal to avoid failed jobs.

Human elements often impact the process especially
when attempting to involve third-parties for
deployment:

1. Code may be underutilising parallelization and
low memory features available within frameworks.

2. It is often unnecessary to reinvent the wheel with
regards to existing software for handling issues.

b - jet Efficiency

M
isi

de
nt

ifi
ca

tio
n

Pr
ob

ab
ili

ty

 DeepJet
Framework

Chart 2. A Functional Overview of the Framework

Figure 1. The Compact Muon Solenoid (CMS) Detector

