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We leverage a streaming architecture based on ELK, Spark 
and Hadoop in order to collect, store, and analyse database 
connection logs in near real-time. The proposed system 
investigates outliers using unsupervised learning; widely adopted 
clustering and classification algorithms for log data, highlighting 
the subtle variances in each model by visualisation of outliers. 
Arriving at a novel solution to evaluate untagged, unfiltered 
connection logs, we propose an approach that can be 
extrapolated to a generalised system of analysing connection logs 
across a large infrastructure comprising thousands of individual 
nodes and generating hundreds of lines in logs per second. 
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I.  INTRODUCTION 
Anomaly detection has provided a classic problem 

statement across multifarious use-cases ranging from scientific 
observations to financial transactions. We define an anomaly as 
a single observation or a set thereof, that fails to conform to a 
group of properties exhibited by larger collections of such 
observations.  

While anomalies are often tagged as undesirable in certain 
domains, they are representative of a highly specialised subset 
that provide insight into interesting phenomena within a 
system. Particularly in the domain of  computer networks, 
intrusion detection and security systems, outliers can signify 
unusual activity critical for the health of a system. They form 
the most important part of monitoring activity, as spikes and 
dips can result in implications including attackers gaining 
access to the internal network, malware-initiated network 
scans, or hosts losing connectivity and crashing. 

II. THE CERN NETWORK 
The network of the European Organisation for Nuclear 

Research (CERN) comprises some 10,000 individual users and 
associated devices signing in both on-site as well as remotely 
into the system. The activity logs generated are monitored, 
analysed, and stored in order for meaningful insights to be 
generated and a historical archive of records to be maintained 
for future reference [1].  

For an organisation working with experiments with the 
capacity to generate upto 30 petabytes of data each year, it is 
imperative to maintain the health of a network that can sustain 
such bandwidth on this scale with a high fault tolerance and 
extremely low probability for failure. The Worldwide Large 

Hadron Collider Computing Grid  (WLCG) was set up around 
2002 in order to distribute the processing load over a multi-
tiered architecture across a global network of 42 countries. This 
includes a datacenter at the complex in Meyrin and the Wigner 
Research Centre in Budapest at the centre of all computation 
and data storage operations [2]. 

III. DATABASE SERVICES AT CERN 
The Database Services Group at CERN is responsible for 

the administration and management of data from the 
experiments. It manages the assortment of critical services and 
web applications offered at CERN scale. This group is 
responsible for provision of an enterprise analytics 
infrastructure comprising Spark, Hadoop, Kafka and so on [3]
[]. The setup comprises of nearly 1,000 Oracle Databases, most 
of them being Real Application Clusters. With nearly 950TB of 
data files for production databases excluding replicas, and a 
logging system of 492TB growing at nearly 180TB annually, 
there is a need for a robust streaming architecture. 

1. Overview of the Data Pipeline for Streaming [5] 

Such an architecture has been set up to allow for data 
streaming and storage. The aggregated log data from incoming 
database connection requests is streamed as a “notification” by 
Apache Flume Connectors to a Kafka buffer. This provides a 
highly flexible, configurable option and a containable memory 
footprint. It is ultimately stored in one of two ways: 

• Temporary short-term storage on Elasticsearch and 
visualisation using Kibana to determine short-term 
anomalies in the database connections. 



• Long-term storage on Hadoop Distributed File System 
(HDFS) in Parquet format (to meet compression 
requirements) that can be retrieved for analysis. 

The architecture provides for a robust model that can 
permit near real-time streaming and visualisations. The 
monitoring encompasses notifications that include alerts, audits 
and performance metrics. A listener is attached to each 
database instance for the purpose of tracking connection 
requests as they come in. These are streamed via the buffer for 
storage as required for a short-term or long-term duration. Such 
a strategy has been proposed in [3]. 

IV. DATA LAKE 
The objective of this data lake is to build a central 

repository for database audit, performance metrics and logs 
with the goal of real-time analytics as well as offline analytics. 

Further, a store such as this one presents an opportunity to 
investigate strategies built around anomaly detection, carry out 
capacity planning as well as troubleshooting. 
A. Connection Parameters 

2. Overview of the Data Pipeline for Streaming [5] 

The log data serves as audit data, performance metrics and 
alerts, and comprises of fields utilised to build the feature 
vector. These logs are utilised to extract a useful subset of 
information from the system, and form the first stage in the 
preprocessing pipeline for building models for outlier detection 
among the connections. 
B. Data Ingestion 

There are challenges faced with regard to scalability, when 
the data ingestion pipelines are set up: 

1. The heterogenous nature of data sources that include 
databases, REST APIs, web sources and logs. 
2. HDFS serves as a file store, not a database, thus some of 

the core features offered by a database system are not 
directly available and must be integrated using indirect 
means. 
3. While HDFS offers a broad range of functionality there 

are certain limitations that do tend to impact the latency of 
the system. 

There are a number of requirements for real-time data 
streaming proposed in [4] that we must be mindful of for the 
sake of scalability and low-latency. Some data sources and 
softwares are common across an array of network log 
streaming systems while they vary in other aspects including 
use-cases, latency, storage mechanism and scalability. 
C. Evaluation of Data Pipeline 

There were a number of tests performed in order to 
evaluate the performance of the system. The major points of 
interest were data storage mechanism as well as the distributed 
messaging system within the proposed architecture: 

1. Figures 3 and 4 show the results of the data storage 
format comparison for the Parquet and Avro formats. We 
pick Parquet because of the scan performance and low 
latency for analytical queries. 
2.  

3. Avro vs. Parquet performance over Analytical Queries  

3. Figure 5 shows the results that were obtained when we 
benchmarked our systems with Flume-driven messaging 
versus a Kafka-driven messaging queue. 

Our architecture is modelled using the results of these tests 
that provide a clearer idea of the scalability and extension of 
such a system over time. It has its own set of drawbacks but we 
minimise these by utilising best practices at scale.  

The current CERN IT Monitoring and Logging architecture 
also faces a subset of issues pertaining to the increased 
luminosity of experiments implying the generation of greater 
volumes of data with each run of the Large Hadron Collider. 
However, there have been coordinated efforts targeted towards 
data acquisition and filtering, thus reducing both the 
computational load and storage requirements for the CERN 
Data Management Systems. 



4. Flume vs. Kafka Benchmarking on CERN Openstack Infrastructure - 4 virtual CPUs, 7.3 gigabytes RAM, and 100 gigabytes storage  

5. Avro vs. Parquet performance over Scanning 

V. ANOMALY DETECTION 
The term ‘outliers' refers to the subset of a series of data 

points that fail to conform to the conventional pattern that the 
rest of these points appear to satisfy.  

Outliers have often been discarded as undesirable 
occurrences due to their nature of interfering with the insights 

and patterns obtained from known observations, however this 
very nature has now deemed them invaluable especially in the 
nature of fields where data acquisition and filtering is required 
to minimise the useful data points. The techniques proposed in 
[7] for dealing with outliers in high dimensional data present a 
simplified picture of why feature selection becomes 
increasingly important as the outliers become susceptible to 
noise in high dimensional data. We implement principal 
component analysis (PCA) as in [8] and singular vector 
decomposition (SVD) on cross-validated slices of our dataset 
in order to allow for dimensionality reduction. 

Anomaly detection is a heavily studied subject [11. 12] 
involving not only supervised [14, 15] and unsupervised 
approaches [5, 13] but also rule-based systems [17]. Recent 
research into intrusion detection demonstrates that among the 
many techniques adopted include unsupervised approaches that 
forego the need for labeled training data. These solutions entail 
clustering of data based on different metrics including distance, 
density and so on, and will be the focus of our research into 
anomaly detection. 

6. Comparison of approaches adopted within the ensemble  

Parameter
Model

Method Contamination

Distance K-Nearest Neighbours 2%

Density Isolation Forests 3%

Density Local Outlier Factor 5%

Classification One-class SVM 2%



7. Survey of Unsupervised Anomaly Detection Approaches [] 

The table presents an overview of the test conditions that 
we utilised in order to evaluate the ensemble of algorithms for 
detecting anomalous database connections within the logs 
streamed into the data lake. The contamination refers to the 
subset of original data that we assumed to be contaminated and 
filtered out as outliers as part of training the models.  

8. Implementing SVD and PCA [7], reducing dimensionality to 3-
dimensional (left) and 2-dimensional tuples for plotting. 

VI. MODELS 
The algorithms follow the paradigm of unsupervised 

learning due to the absence of any labeled training data and are 
distributed by the metric that they evaluate i.e. distance, density 
and classification-based methods as shown in the chart above. 

However, the initial stages for this pipeline involved the 
preprocessing of data utilising PCA and SVD. The high-
dimensional data was thus reduced to a smaller number of 

dimensions that could be then utilised for generating 
visualisations.  

9. K-means clustering allows us to visualise the data and arrive at a 
reasonable estimate for modalities. 

We utilise an implementation of the k-means clustering 
algorithm proposed in [10] which presents a simplified picture 
of the number of modalities of the data, helpful when deciding 
metrics such as contamination, and in appreciating the 
evaluation presented by each individual model. In addition to 
evaluation metrics for unsupervised clustering methods such a 
silhouette. 

A.  K-Nearest Neighbours (kNNs) 
Many strategies [5, 6, 9] for outlier detection have 

emphasised on clustering as a central element for their 



approach(es). One of the elemental steps in clustering with a 
view to classifying anomalies, kNN clustering bases the 
grouping on a distance-oriented metric. Specifically, it 
calculates the Euclidean distance of a given point from the set 
of points constituting the “neighbours” of said point, and an 
inherent voting system ensures the point falls into the most 
likely category of similar connection logs, in this case.  

10. K-nearest neighbours with number of anomalies (plotted in violet) 
filtered and optimised from left to right. 

We optimise the results by implementing a recurring filter 
that uses a predetermined threshold for eliminating false-
positives. Simply put, we recursively iterate the anomalies to 
filter them to 2% of the original dataset, thus excluding the vast 
majority of the normal data wrongly tagged as anomalous. 

B. Isolation Forests 
A near linear time-complexity algorithm, Isolation Forests 

or iForests similar to the ones proposed in [18] allow the 
adoption of an isolation based approach that can achieve 
performance similar to random forests and local outlier factor 
based methods to detect anomalies. 

11. Isolation forests with outlier detection (outliers in red) optimised 
from left to right. 

In figure 11, the optimisation carried out reduces the 
number of anomalies by diminishing the explicit threshold for 
contamination as set within the data. This method is typically 
useful for datasets with high-dimensionality with large 
numbers of irrelevant attributes due to its low computational 
complexity compared to other algorithms. 

C. Local Outlier Factor 

Outlier detection has often been considered a binary 
classification problem. However, in [19], the authors propose a 
local outlier factor that provides a degree of isolation with 
regards to its neighbourhood. This is interesting as it lays 
emphasis on the local environment of a data point and not the 
global density distribution.  

12. Local outlier factor showing detected outliers (outliers encircled in 
red) that are optimised using a threshold from left to right. 

As in the previous cases, we assume the training data to be 
contaminated in itself since it is illogical to assume the 
captured logs comprise of entirely legal activity within the 
system. The reduction in red circled data points denotes a 
marked reduction in false-positives for the algorithm, to put 
simply. 

D. One-class Support Vector Machine 

Generally constituting the bulk of methods adopted to 
address  supervised multiclass classification problems, one-
class support vector machines (OCSVMs) are a special class of 
Support Vector Machines that allow the analysis of an input 
array with no class labels and generate a soft boundary for its 
analysis [16].  

13. OCSVM with novelty detection (outliers in maroon) optimised from 
left to right. 

We extrapolate the application of OCSVMs to novelty 
detection that uses its kernel function to map the data into a 
feature space and thereby analyse the outliers. By controlling 



the contamination metric in the original data, we arrive at a 
reduced false-positive detection in the system. 

VII. EVALUATION 
To arrive at a performance evaluation for such a system we 

must consider firstly that there is no absolute figure of merit 
and due to the lack of tagged data, there is no possible 
confusion matrix to be derived. However, there are practices 
that can calculate the efficiency achieved by measuring the 
similarity of a data point to the rest of the cluster. One such 
approach utilises the silhouette metric often used in 
unsupervised learning.  

While it has been proposed that randomised search can 
often yield results comparable to grid search in cases where 
time and space complexity is an issue [20], we are not 
constrained by either and hence can implement such an 
approach in an attempt to optimise the hyperparameters: here 
specifically the contamination metric across models. 

We find that the maximum silhouette score of 0.35 across 
ensembles was obtained at the contamination values shown in 
figure 6. This serves as one part of the evaluation for our 
experiment. The other, more manual portion involved the 
cross-verification of the detected anomalies against security 
incidents within the system. We find that there are three 
categories that these detected results fall into: 

1. Malware triggering reconnection requests from hosts 
thus resulting in system load and increased transfer of data 
between the server and specific host. 

2. User login outside the regular pattern e. g. working on a 
holiday; since it fits the definition of an anomaly, such an event 
is duly detected and flagged within the system. 

3. User requesting  multiple resources not necessarily 
useful to successful operation and without a history of access 
for such resources. 

While the experiment serves as a proof-of-concept for the 
introduction of a formal system, these results are encouraging 
especially in the absence of any existing system within the 
CERN network to detect or flag anomalous connections. More 
importantly, such an apparatus can be generalised to other 
applications involving the analysis of large chunks of log data 
or data in similar formats, using the presented architecture, in 
order to increase the efficiency and improve the performance 
of the system. 
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