
Anomaly Detection for Network Connection Logs

Swapneel Mehta
Dept. Of Computer Engineering,

D. J. Sanghvi College of Engineering
Mumbai, India

swapneel.mehta@djsce.edu.in

Prasanth Kothuri, Daniel Lanza Garcia
IT-DB Group

European Organisation for Nuclear Research
Geneva, Switzerland

{prasanth.kothuri, daniel.lanza}@cern.ch  

We leverage a streaming architecture based on ELK, Spark
and Hadoop in order to collect, store, and analyse database
connection logs in near real-time. The proposed system
investigates outliers using unsupervised learning; widely adopted
clustering and classification algorithms for log data, highlighting
the subtle variances in each model by visualisation of outliers.
Arriving at a novel solution to evaluate untagged, unfiltered
connection logs, we propose an approach that can be
extrapolated to a generalised system of analysing connection logs
across a large infrastructure comprising thousands of individual
nodes and generating hundreds of lines in logs per second.

Network Connection Logs, Anomaly Detection, Unsupervised
Learning, Big Data Architecture, Clustering, Data Streaming

I. INTRODUCTION
Anomaly detection has provided a classic problem

statement across multifarious use-cases ranging from scientific
observations to financial transactions. We define an anomaly as
a single observation or a set thereof, that fails to conform to a
group of properties exhibited by larger collections of such
observations.

While anomalies are often tagged as undesirable in certain
domains, they are representative of a highly specialised subset
that provide insight into interesting phenomena within a
system. Particularly in the domain of computer networks,
intrusion detection and security systems, outliers can signify
unusual activity critical for the health of a system. They form
the most important part of monitoring activity, as spikes and
dips can result in implications including attackers gaining
access to the internal network, malware-initiated network
scans, or hosts losing connectivity and crashing.

II. THE CERN NETWORK
The network of the European Organisation for Nuclear

Research (CERN) comprises some 10,000 individual users and
associated devices signing in both on-site as well as remotely
into the system. The activity logs generated are monitored,
analysed, and stored in order for meaningful insights to be
generated and a historical archive of records to be maintained
for future reference [1].

For an organisation working with experiments with the
capacity to generate upto 30 petabytes of data each year, it is
imperative to maintain the health of a network that can sustain
such bandwidth on this scale with a high fault tolerance and
extremely low probability for failure. The Worldwide Large

Hadron Collider Computing Grid (WLCG) was set up around
2002 in order to distribute the processing load over a multi-
tiered architecture across a global network of 42 countries. This
includes a datacenter at the complex in Meyrin and the Wigner
Research Centre in Budapest at the centre of all computation
and data storage operations [2].

III. DATABASE SERVICES AT CERN
The Database Services Group at CERN is responsible for

the administration and management of data from the
experiments. It manages the assortment of critical services and
web applications offered at CERN scale. This group is
responsible for provision of an enterprise analytics
infrastructure comprising Spark, Hadoop, Kafka and so on [3]
[]. The setup comprises of nearly 1,000 Oracle Databases, most
of them being Real Application Clusters. With nearly 950TB of
data files for production databases excluding replicas, and a
logging system of 492TB growing at nearly 180TB annually,
there is a need for a robust streaming architecture.

1. Overview of the Data Pipeline for Streaming [5]

Such an architecture has been set up to allow for data
streaming and storage. The aggregated log data from incoming
database connection requests is streamed as a “notification” by
Apache Flume Connectors to a Kafka buffer. This provides a
highly flexible, configurable option and a containable memory
footprint. It is ultimately stored in one of two ways:

• Temporary short-term storage on Elasticsearch and
visualisation using Kibana to determine short-term
anomalies in the database connections.

• Long-term storage on Hadoop Distributed File System
(HDFS) in Parquet format (to meet compression
requirements) that can be retrieved for analysis.

The architecture provides for a robust model that can
permit near real-time streaming and visualisations. The
monitoring encompasses notifications that include alerts, audits
and performance metrics. A listener is attached to each
database instance for the purpose of tracking connection
requests as they come in. These are streamed via the buffer for
storage as required for a short-term or long-term duration. Such
a strategy has been proposed in [3].

IV. DATA LAKE
The objective of this data lake is to build a central

repository for database audit, performance metrics and logs
with the goal of real-time analytics as well as offline analytics.

Further, a store such as this one presents an opportunity to
investigate strategies built around anomaly detection, carry out
capacity planning as well as troubleshooting.
A. Connection Parameters

2. Overview of the Data Pipeline for Streaming [5]

The log data serves as audit data, performance metrics and
alerts, and comprises of fields utilised to build the feature
vector. These logs are utilised to extract a useful subset of
information from the system, and form the first stage in the
preprocessing pipeline for building models for outlier detection
among the connections.
B. Data Ingestion

There are challenges faced with regard to scalability, when
the data ingestion pipelines are set up:

1. The heterogenous nature of data sources that include
databases, REST APIs, web sources and logs.
2. HDFS serves as a file store, not a database, thus some of

the core features offered by a database system are not
directly available and must be integrated using indirect
means.
3. While HDFS offers a broad range of functionality there

are certain limitations that do tend to impact the latency of
the system.

There are a number of requirements for real-time data
streaming proposed in [4] that we must be mindful of for the
sake of scalability and low-latency. Some data sources and
softwares are common across an array of network log
streaming systems while they vary in other aspects including
use-cases, latency, storage mechanism and scalability.
C. Evaluation of Data Pipeline

There were a number of tests performed in order to
evaluate the performance of the system. The major points of
interest were data storage mechanism as well as the distributed
messaging system within the proposed architecture:

1. Figures 3 and 4 show the results of the data storage
format comparison for the Parquet and Avro formats. We
pick Parquet because of the scan performance and low
latency for analytical queries.
2.

3. Avro vs. Parquet performance over Analytical Queries

3. Figure 5 shows the results that were obtained when we
benchmarked our systems with Flume-driven messaging
versus a Kafka-driven messaging queue.

Our architecture is modelled using the results of these tests
that provide a clearer idea of the scalability and extension of
such a system over time. It has its own set of drawbacks but we
minimise these by utilising best practices at scale.

The current CERN IT Monitoring and Logging architecture
also faces a subset of issues pertaining to the increased
luminosity of experiments implying the generation of greater
volumes of data with each run of the Large Hadron Collider.
However, there have been coordinated efforts targeted towards
data acquisition and filtering, thus reducing both the
computational load and storage requirements for the CERN
Data Management Systems.

4. Flume vs. Kafka Benchmarking on CERN Openstack Infrastructure - 4 virtual CPUs, 7.3 gigabytes RAM, and 100 gigabytes storage

5. Avro vs. Parquet performance over Scanning

V. ANOMALY DETECTION
The term ‘outliers' refers to the subset of a series of data

points that fail to conform to the conventional pattern that the
rest of these points appear to satisfy.

Outliers have often been discarded as undesirable
occurrences due to their nature of interfering with the insights

and patterns obtained from known observations, however this
very nature has now deemed them invaluable especially in the
nature of fields where data acquisition and filtering is required
to minimise the useful data points. The techniques proposed in
[7] for dealing with outliers in high dimensional data present a
simplified picture of why feature selection becomes
increasingly important as the outliers become susceptible to
noise in high dimensional data. We implement principal
component analysis (PCA) as in [8] and singular vector
decomposition (SVD) on cross-validated slices of our dataset
in order to allow for dimensionality reduction.

Anomaly detection is a heavily studied subject [11. 12]
involving not only supervised [14, 15] and unsupervised
approaches [5, 13] but also rule-based systems [17]. Recent
research into intrusion detection demonstrates that among the
many techniques adopted include unsupervised approaches that
forego the need for labeled training data. These solutions entail
clustering of data based on different metrics including distance,
density and so on, and will be the focus of our research into
anomaly detection.

6. Comparison of approaches adopted within the ensemble  

Parameter
Model

Method Contamination

Distance K-Nearest Neighbours 2%

Density Isolation Forests 3%

Density Local Outlier Factor 5%

Classification One-class SVM 2%

7. Survey of Unsupervised Anomaly Detection Approaches []

The table presents an overview of the test conditions that
we utilised in order to evaluate the ensemble of algorithms for
detecting anomalous database connections within the logs
streamed into the data lake. The contamination refers to the
subset of original data that we assumed to be contaminated and
filtered out as outliers as part of training the models.

8. Implementing SVD and PCA [7], reducing dimensionality to 3-
dimensional (left) and 2-dimensional tuples for plotting.

VI. MODELS
The algorithms follow the paradigm of unsupervised

learning due to the absence of any labeled training data and are
distributed by the metric that they evaluate i.e. distance, density
and classification-based methods as shown in the chart above.

However, the initial stages for this pipeline involved the
preprocessing of data utilising PCA and SVD. The high-
dimensional data was thus reduced to a smaller number of

dimensions that could be then utilised for generating
visualisations.

9. K-means clustering allows us to visualise the data and arrive at a
reasonable estimate for modalities.

We utilise an implementation of the k-means clustering
algorithm proposed in [10] which presents a simplified picture
of the number of modalities of the data, helpful when deciding
metrics such as contamination, and in appreciating the
evaluation presented by each individual model. In addition to
evaluation metrics for unsupervised clustering methods such a
silhouette.

A. K-Nearest Neighbours (kNNs)
Many strategies [5, 6, 9] for outlier detection have

emphasised on clustering as a central element for their

approach(es). One of the elemental steps in clustering with a
view to classifying anomalies, kNN clustering bases the
grouping on a distance-oriented metric. Specifically, it
calculates the Euclidean distance of a given point from the set
of points constituting the “neighbours” of said point, and an
inherent voting system ensures the point falls into the most
likely category of similar connection logs, in this case.

10. K-nearest neighbours with number of anomalies (plotted in violet)
filtered and optimised from left to right.

We optimise the results by implementing a recurring filter
that uses a predetermined threshold for eliminating false-
positives. Simply put, we recursively iterate the anomalies to
filter them to 2% of the original dataset, thus excluding the vast
majority of the normal data wrongly tagged as anomalous.

B. Isolation Forests
A near linear time-complexity algorithm, Isolation Forests

or iForests similar to the ones proposed in [18] allow the
adoption of an isolation based approach that can achieve
performance similar to random forests and local outlier factor
based methods to detect anomalies.

11. Isolation forests with outlier detection (outliers in red) optimised
from left to right.

In figure 11, the optimisation carried out reduces the
number of anomalies by diminishing the explicit threshold for
contamination as set within the data. This method is typically
useful for datasets with high-dimensionality with large
numbers of irrelevant attributes due to its low computational
complexity compared to other algorithms.

C. Local Outlier Factor

Outlier detection has often been considered a binary
classification problem. However, in [19], the authors propose a
local outlier factor that provides a degree of isolation with
regards to its neighbourhood. This is interesting as it lays
emphasis on the local environment of a data point and not the
global density distribution.

12. Local outlier factor showing detected outliers (outliers encircled in
red) that are optimised using a threshold from left to right.

As in the previous cases, we assume the training data to be
contaminated in itself since it is illogical to assume the
captured logs comprise of entirely legal activity within the
system. The reduction in red circled data points denotes a
marked reduction in false-positives for the algorithm, to put
simply.

D. One-class Support Vector Machine

Generally constituting the bulk of methods adopted to
address supervised multiclass classification problems, one-
class support vector machines (OCSVMs) are a special class of
Support Vector Machines that allow the analysis of an input
array with no class labels and generate a soft boundary for its
analysis [16].

13. OCSVM with novelty detection (outliers in maroon) optimised from
left to right.

We extrapolate the application of OCSVMs to novelty
detection that uses its kernel function to map the data into a
feature space and thereby analyse the outliers. By controlling

the contamination metric in the original data, we arrive at a
reduced false-positive detection in the system.

VII. EVALUATION
To arrive at a performance evaluation for such a system we

must consider firstly that there is no absolute figure of merit
and due to the lack of tagged data, there is no possible
confusion matrix to be derived. However, there are practices
that can calculate the efficiency achieved by measuring the
similarity of a data point to the rest of the cluster. One such
approach utilises the silhouette metric often used in
unsupervised learning.

While it has been proposed that randomised search can
often yield results comparable to grid search in cases where
time and space complexity is an issue [20], we are not
constrained by either and hence can implement such an
approach in an attempt to optimise the hyperparameters: here
specifically the contamination metric across models.

We find that the maximum silhouette score of 0.35 across
ensembles was obtained at the contamination values shown in
figure 6. This serves as one part of the evaluation for our
experiment. The other, more manual portion involved the
cross-verification of the detected anomalies against security
incidents within the system. We find that there are three
categories that these detected results fall into:

1. Malware triggering reconnection requests from hosts
thus resulting in system load and increased transfer of data
between the server and specific host.

2. User login outside the regular pattern e. g. working on a
holiday; since it fits the definition of an anomaly, such an event
is duly detected and flagged within the system.

3. User requesting multiple resources not necessarily
useful to successful operation and without a history of access
for such resources.

While the experiment serves as a proof-of-concept for the
introduction of a formal system, these results are encouraging
especially in the absence of any existing system within the
CERN network to detect or flag anomalous connections. More
importantly, such an apparatus can be generalised to other
applications involving the analysis of large chunks of log data
or data in similar formats, using the presented architecture, in
order to increase the efficiency and improve the performance
of the system.
1. Computing (2012). European Organisation for Nuclear Research

(CERN). Retrieved from: http://cds.cern.ch/record/1997391
2. Worldwide Large Hadron Collider Computing Grid (2002). European

Organisation for Nuclear Research (CERN). Retrieved from: http://
wlcg.web.cern.ch/

3. Ledain, J.E., Colgrove, J.A. and Koren, D., Veritas Software Corp.,
1999. Efficient virtualized mapping space for log device data storage
system. U.S. Patent 5,996,054.

4. Stonebraker, M., Çetintemel, U. and Zdonik, S., 2005. The 8
requirements of real-time stream processing. ACM SIGMOD
Record, 34(4), pp.42-47.

5. Rasheda Smith, Alan Bivens, Mark Embrechts, Chandrika Palagiri, and
Boleslaw Szymanski, “Clustering Approaches for Anomaly Based
Intrusion Detection”, Walter Lincoln Hawkins Graduate Research
Conference 2002 Proceedings, New York, USA, October 2002.

6. Rousseeuw, P.J. and Leroy, A.M., 2005. Robust regression and outlier
detection (Vol. 589). John wiley & sons.

7. Aggarwal, C.C. and Yu, P.S., 2001, May. Outlier detection for high
dimensional data. In ACM Sigmod Record (Vol. 30, No. 2, pp. 37-46).
ACM.

8. Jolliffe, I.T., 1986. Principal Component Analysis and Factor Analysis.
In Principal component analysis (pp. 115-128). Springer New York.

9. Liao, Y. and Vemuri, V.R., 2002. Use of k-nearest neighbor classifier for
intrusion detection. Computers & security, 21(5), pp.439-448.

10. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman,
R. and Wu, A.Y., 2002. An efficient k-means clustering algorithm:
Analysis and implementation. IEEE transactions on pattern analysis
and machine intelligence, 24(7), pp.881-892.

11. Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3), p.15.

12. Patcha, A. and Park, J.M., 2007. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer
networks, 51(12), pp.3448-3470.

13. Eskin, E., Arnold, A., Prerau, M., Portnoy, L. and Stolfo, S., 2002. A
geometric framework for unsupervised anomaly detection: Detecting
intrusions in unlabeled data. Applications of data mining in computer
security, 6, pp.77-102.

14. Susan M.Bridges, and Rayford B. Vaughn, “Fuzzy Data Mining and
Genetic Algorithms Applied to Intrusion Detection”, Proceedings of the
National Information Systems Security Conference (NISSC), Baltimore,
MD, October, 2000.

15. A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava & V. Kumar, “A
Comparative Study of Anomaly Detection Schemes in Network
Intrusion Detection”, Proceedings of Third SIAM Conference on Data
Mining, San Francisco, May 2003.

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and
Vanderplas, J., 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12(Oct), pp.2825-2830.

17. Fu, Q., Lou, J.G., Wang, Y. and Li, J., 2009, December. Execution
anomaly detection in distributed systems through unstructured log
analysis. In Data Mining, 2009. ICDM'09. Ninth IEEE International
Conference on (pp. 149-158). IEEE.

18. Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest.
In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference
on (pp. 413-422). IEEE.

19. Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF:
identifying density-based local outliers. In ACM sigmod record (Vol. 29,
No. 2, pp. 93-104). ACM.

20. Bergstra, J. and Bengio, Y., 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(Feb), pp.
281-305.

http://cds.cern.ch/record/1997391
http://wlcg.web.cern.ch/
http://wlcg.web.cern.ch/

